Get Involved

Float2

A vector with two floating-point components x and y.

Header File

#include <ply-math/Vector.h>

Also included from <ply-math/Base.h>.

Data Members

 float x [code]
 float y [code]

Constructors

  Float2::Float2() [code]

Constructs an uninitialized Float2.

  Float2::Float2(float t) [code]

Constructs a Float2 with both components set to t.

Float2 v = {1};
StdOut::text() << v;  // "{1, 1}"
  Float2::Float2(float x, float y) [code]

Constructs a Float2 from the given components.

Float2 v = {1, 0};

Assignment

void Float2::operator=(const Float2& arg) & [code]

Copy assignment. Declared with an lvalue ref-qualifier so that it's an error to assign to an rvalue.

a.normalized() = b;  // error

Arithmetic Operators

Float2 operator-(const Float2& a) [code]

Unary negation.

Float2 operator+(const Float2& a, const Float2& b) [code]
Float2 operator-(const Float2& a, const Float2& b) [code]
Float2 operator*(const Float2& a, const Float2& b) [code]
Float2 operator/(const Float2& a, const Float2& b) [code]

Returns a vector whose components are the result of applying the given operation to the corresponding components of a and b. Each component is acted on independently.

StdOut::text() << Float2{2, 3} * Float2{4, 1};  // "{8, 3}"

If you specify a scalar value in place of a Float2, it will be promoted to a Float2 by replicating the value to each component.

StdOut::text() << Float2{2, 3} * 2;  // "{4, 6}"
StdOut::text() << 8 / Float2{2, 4};  // "{4, 2}"
void operator+=(Float2& a, const Float2& b) [code]
void operator-=(Float2& a, const Float2& b) [code]
void operator*=(Float2& a, const Float2& b) [code]
void operator/=(Float2& a, const Float2& b) [code]

In-place versions of the above operators.

Float2 v = {2, 3};
v *= {4, 1};
StdOut::text() << v;  // "{8, 3}"

Comparison Functions

bool operator==(const Float2& a, const Float2& b) [code]
bool operator!=(const Float2& a, const Float2& b) [code]

Returns true if the vectors are equal (or not equal) using floating-point comparison. In particular, Float2{0.f} == Float2{-0.f} is true.

 bool isNear(const Float2& a, const Float2& b, float epsilon) [code]

Returns true if a is approximately equal to b. The tolerance is given by epsilon.

Float2 v = {0.9999f, 0.0001f};
StdOut::text() << isNear(v, Float2{1, 0}, 1e-3f);  // "true"
Bool2 operator<(const Float2& a, const Float2& b) [code]
Bool2 operator<=(const Float2& a, const Float2& b) [code]
Bool2 operator>(const Float2& a, const Float2& b) [code]
Bool2 operator>=(const Float2& a, const Float2& b) [code]

These functions compare each component individually. The result of each comparison is returned in a Bool2. Call all() to check if the result was true for all components, or call any() to check if the result was true for any component.

StdOut::text() << all(Float2{1, 2} > Float2{0, 1});  // "true"

These functions are useful for testing whether a point is inside a box. See the implementation of Box<>::contains for an example.

Geometric Functions

 float dot(const Float2& a, const Float2& b) [code]

Returns the dot product of two vectors.

StdOut::text() << dot(Float2{1, 0}, Float2{3, 4});  // "2"
 float cross(const Float2& a, const Float2& b) [code]

Returns the cross product of two vectors.

StdOut::text() << cross(Float2{1, 0}, Float2{3, 4});  // "4"

Length Functions

 float Float2::length2() const [code]

Returns the square of the length of the vector.

 float Float2::length() const [code]

Returns the length of the vector. Equivalent to sqrtf(this->length2()).

 bool Float2::isUnit(float thresh = 0.001f) const [code]

Returns true if the squared length of the vector is sufficiently close to 1.0. The threshold is given by thresh.

 Float2 Float2::normalized() const [code]

Returns a unit-length vector having the same direction as this. No safety check is performed.

 Float2 Float2::safeNormalized(const Float2& fallback = {1, 0}, float epsilon = 1e-20f) const [code]

Returns a unit-length vector having the same direction as this with safety checks.

Conversion Functions

 template <typename OtherVec2>
OtherVec2 Float2::to() const [code]

Converts to another 2D vector type such as IntVec2 or Int2<s16>.

Float2 a = {4, 5};
IntVec2 b = a.to<IntVec2>();

Color Functions

 float& Float2::r() [code]
 float Float2::r() const [code]
 float& Float2::g() [code]
 float Float2::g() const [code]

Convenience functions for interpreting the vector as a color. The r() and g() functions are aliases for the x and y components respectively.

Float4 c = {1.0f, 0.8f};
StdOut::text().format("{}, {}", c.r(), c.g());  // "1.0, 0.8"

Swizzle Functions

 Float2 Float2::swizzle(u32 i0, u32 i1) const [code]
 Float3 Float2::swizzle(u32 i0, u32 i1, u32 i2) const [code]
 Float4 Float2::swizzle(u32 i0, u32 i1, u32 i2, u32 i3) const [code]

Returns a new vector whose components are taken from the given indices. x and y are at indices 0 and 1 respectively. Similar to GLSL swizzling except that the components are specified by numeric index, and you can't use it to modify the original vector; only to read from it.

Float2 v = {4, 5};
StdOut::text() << v.swizzle(1, 0);        // "{5, 4}"
StdOut::text() << v.swizzle(0, 1, 1, 0);  // "{4, 5, 5, 4}"

These functions work correctly in the current version of all major compilers even though they use type punning, which is undefined behavior in standard C++.

Componentwise Functions

 Float2 clamp(const Float2& v, const Float2& mins, const Float2& maxs) [code]

Returns a copy of v with each component constrained to lie within the range determined by the corresponding components of mins and maxs.

Float2 v = {3, 1.5f};
StdOut::text() << clamp(v, Float2{0, 1}, Float2{1, 2});  // "{1, 1.5}"
StdOut::text() << clamp(v, 0, 1);                        // "{1, 1}"
 Float2 abs(const Float2& a) [code]

Returns a vector with each component set to the absolute value of the corresponding component of a.

StdOut::text() << abs(Float2{-2, 3});  // "{2, 3}"
 Float2 pow(const Float2& a, const Float2& b) [code]

Returns a vector with each component set to the corresponding component of a raised to the power of the corresponding component of b.

StdOut::text() << pow(Float2{1, 2}, Float2{2, 3});  // "{1, 8}"
StdOut::text() << pow(Float2{1, 2}, 2);             // "{1, 4}"
 Float2 min(const Float2& a, const Float2& b) [code]

Returns a vector with each component set to minimum of the corresponding components of a and b.

StdOut::text() << min(Float2{0, 1}, Float2{1, 0});  // "{0, 0}"
 Float2 max(const Float2& a, const Float2& b) [code]

Returns a vector with each component set to maximum of the corresponding components of a and b.

StdOut::text() << max(Float2{0, 1}, Float2{1, 0});  // "{1, 1}"

Rounding Functions

 Float2 roundUp(const Float2& value, float spacing = 1) [code]
 Float2 roundDown(const Float2& value, float spacing = 1) [code]
 Float2 roundNearest(const Float2& value, float spacing = 1) [code]

Returns a vector with each component set to the rounded result of the corresponding component of vec. The optional spacing argument can be used to round to arbitrary spacings. Most precise when spacing is a power of 2.

StdOut::text() << roundUp(Float2{-0.3f, 1.4f});   // "{0, 2}"
StdOut::text() << roundDown(Float2{1.8f}, 0.5f);  // "{1.5, 1.5}"
 bool isRounded(const Float2& value, float spacing = 1) [code]

Returns true if every component of vec is already rounded. The optional spacing argument can be used to round to arbitrary spacings. Most precise when spacing is a power of 2.

StdOut::text() << isRounded(Float2{1.5f, 2.5f}, 0.5f);  // "true"